Perceived Audiovisual Quality Modelling based on Decison Trees, Genetic Programming and Neural Networks

نویسندگان

  • Edip Demirbilek
  • Jean-Charles Grégoire
چکیده

Our objective is to build machine learning based models that predict audiovisual quality directly from a set of correlated parameters that are extracted from a target quality dataset. We have used the bitstream version of the INRS audiovisual quality dataset that reflects contemporary realtime configurations for video frame rate, video quantization, noise reduction parameters and network packet loss rate. We have utilized this dataset to build bitstream perceived quality estimation models based on the Random Forests, Bagging, Deep Learning and Genetic Programming methods. We have taken an empirical approach and have generated models varying from very simple to the most complex depending on the number of features used from the quality dataset. Random Forests and Bagging models have overall generated the most accurate results in terms of RMSE and Pearson correlation coefficient values. Deep Learning and Genetic Programming based bitstream models have also achieved good results but that high performance was observed only with a limited range of features. We have also obtained the epsilon-insensitive RMSE values for each model and have computed the significance of the difference between the correlation coefficients. Overall we conclude that computing the bitstream information is worth the effort it takes to generate and helps to build more accurate models for real-time communications. However, it is useful only for the deployment of the right algorithms with the carefully selected subset of the features. The dataset and tools that have been developed during this research are publicly available for research and development purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank

In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...

متن کامل

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

Bedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming

Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...

متن کامل

Bedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming

Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.05889  شماره 

صفحات  -

تاریخ انتشار 2017